Evidence for WIF Career Pathways-Related Interventions

Purpose

This review is designed to facilitate evaluators’ knowledge of the current literature in workforce development scholarship and practice related to “career pathways” models. The WIF NEC, DOL, and Abt Associates review and provide these studies as sample recommended materials for evaluators’ to use in developing the evidence base for this type of intervention. Some studies are publicly available; hyperlinks have been provided for these below and the documents have been uploaded to the WIF NEC SharePoint site for your convenience.

Past Studies

The literature related to career pathway interventions generally falls into two categories: (a) less rigorous frameworks, guides, case studies and outcomes studies that explore models or specific programs that identify as “career pathway” programs or have been designated so by researchers, and (b) more rigorous experimental or quasi-experimental evaluations of programs that fit within a piece of the career pathways framework or employ many strategies that make up the pathways framework.

Practice Guidance

In 2011, the Department of Labor’s Education and Training Administration released the Career Pathways Toolkit: Six Key Elements for Success (Kozumplik, Nyborg, Garcia, Cantu, & Larsen, 2011). The toolkit is informed by grantee experiences in the Career Pathways Initiative and was developed with input from representatives from federal agencies as well as subject matter experts from technical assistance and research organizations. The toolkit is focused broadly on a systems/policy level and includes examples of how Career Pathway Initiative grantees implemented each of six key elements that experts see as necessary to sustaining a career pathway. Similarly focused at the statewide level, Perry Stephens (2009) identified five key elements to supporting a career pathway program, based on case studies of statewide initiatives, including the consideration of a variety of partners, the capacity of colleges to make changes to organize around career pathways, the ability to gain political and funding support throughout leadership changes, the infrastructure needed to track and share data, and addressing both the needs of students and the needs of businesses/employers.

Focused more at the programmatic level, Fein (2012) presents a framework for evaluating individual career pathway programs, as well as considerations for designing those evaluations, and describes four major categories of service strategies common in career pathway programs: “(1) comprehensive and
well-designed approaches to assessment of skills and needs; (2) promising and innovative approaches to instruction and occupational training; (3) academic and non-academic supports to promote success; and (4) approaches for connecting students with career-track employment opportunities.”

The Aspen Institute’s Courses to Employment outcomes study evaluated community college and CBO partnerships that engaged participants at different education levels, and analyzed education and employment outcomes in pathway analyses of each program (Conway, Blair, & and Helmer, 2012).

Experimental and Quasi-Experimental Evidence

Several experimental and quasi-experimental evaluations provide evidence for multiple career pathway approaches. For example, a national evaluation of the Job Training Partnership Act demonstrated earnings for low-income adult women that were larger than the costs spent per trainee, and on-the-job training produced higher earnings than classroom-only training (Orr et al., 1996). An evaluation of the Center for Employment Training (CET) demonstrated similarly strong results when the training is relevant to local employers as well (Burghardt et al. 1992 and Miller et al 2005).

More recent evaluations support these findings. A quasi-experimental evaluation of Capital IDEA, a long-term program providing skills training and support services to low-income residents of Austin, Texas, found that participation in the program was associated with a 10.9 percentage increase in quarterly employment, and a $1,223 increase in average quarterly earnings, compared to a matched comparison group (Smith & King, 2011) (King, Smith, & Schroeder, 2009). A quasi-experimental evaluation of the I-BEST program, which involves courses that are jointly designed and taught by basic skills and occupational instructors, found that I-BEST students did better on a range of educational outcomes; they were more likely to continue into credit-bearing coursework, earn credits that count towards a credential, earn occupational certificates and make point gains on basic skills tests. Analyses using propensity score matching similarly found that I-BEST participation was associated with better outcomes (Jenkins, Zeidenberg, & Kienzl, 2009). Other I-BEST evaluations have found similar positive outcomes among participants, including those related to higher employment rates and earnings (WA State 2011).

Though the focus was on shorter-term programs, the Sectoral Employment Impact Study offers experimental evidence for an approach based on identifying opportunities within a specific industry and offering supports necessary to complete training. In that study, participants saw earnings gains of $4,500 (18%) over the control group, as well as higher rates of employment and a greater likelihood of working in a job that offered benefits (Maguire, Freely, Clymer, Conway, & Schwartz, 2010). In an experimental evaluation of Year Up, a career pathway program that engages young adults for six months of classroom training followed by a six month internship in information technology and investment operations, participants earned nearly $3,500 (30%) more than their counterparts in a control group in their first year after entering the labor market (Roder & Elliott, 2011). Finally, recent findings from a random assignment evaluation of the Learning Communities Demonstration linked education through a series of cohort-based courses noted higher levels of social integration as an additional outcome of this unique pathways model (Visher et al 2012).

